Point Groups and Space Groups in Geometric Algebra
نویسنده
چکیده
Symmetry is a fundamental organizational concept in art as well as science. To develop and exploit this concept to its fullest, it must be given a precise mathematical formulation. This has been a primary motivation for developing the branch of mathematics known as “group theory.” There are many kinds of symmetry, but the symmetries of rigid bodies are the most important and useful, because they are the most ubiquitous as well as the most obvious. A geometric figure or a rigid body is said to be “symmetrical” if there exist isometries which permute its parts while leaving the object as a whole unchanged. An isometry of this kind is called a symmetry. The symmetries of a given object form a group called the symmetry group of the object. Obviously, every symmetry group is a subgroup of the group of all such isometries, known as the Euclidean group E(3). As is well known, every symmetry S can be given the mathematical form
منابع مشابه
Interactive 3D Space Group Visualization with CLUCalc and Crystallographic Subperiodic Groups in Geometric Algebra
The Space Group Visualizer (SGV) for all 230 3D space groups is a standalone PC application based on the visualization software CLUCalc. We first explain the unique geometric algebra structure behind the SGV. In the second part we review the main features of the SGV: The GUI, group and symmetry selection, mouse pointer interactivity, and visualization options. We further introduce the joint use...
متن کاملTutorial on Reflections in Geometric Algebra
This tutorial focuses on describing the implementation and use of reflections in the geometric algebras of three-dimensional (3D) Euclidean space and in the five-dimensional (5D) conformal model of Euclidean space. In the latter reflections at parallel planes serve to implement translations as well. Combinations of reflections allow to implement all isometric transformations. As a concrete exam...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملA representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کاملThree Vector Generation of Crystal Space Groups in Geometric Algebra
This paper focuses on the symmetries of crystal space lattices. All two dimensional (2D) and three dimensional (3D) point groups of 2D and 3D crystal cells are exclusively described by vectors (two in 2D, three in 3D for one particular cell) taken from the physical cells. Geometric multiplication of these vectors completely generates all symmetries, including reflections, rotations, inversions,...
متن کاملOn some open problems in cone metric space over Banach algebra
In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001